首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地质学   49篇
海洋学   30篇
自然地理   9篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
  2010年   7篇
  2009年   6篇
  2008年   6篇
  2007年   11篇
  2006年   7篇
  2004年   3篇
  2003年   2篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有90条查询结果,搜索用时 250 毫秒
61.
The Caledonide Orogen in the Nordic countries is exposed in Norway, western Sweden, westernmost Finland, on Svalbard and in northeast Greenland. In the mountains of western Scandinavia, the structure is dominated by E-vergent thrusts with allochthons derived from the Baltoscandian platform and margin, from outboard oceanic (lapetus) terranes and with the highest thrust sheets having Laurentian affinities. The other side of this bivergent orogen is well exposed in northeastern Greenland, where W-vergent thrust sheets emplace Laurentian continental margin assemblages onto the platform. Svalbard's Caledonides are disrupted by late Caledonian faults, but have close affinity with the Laurentian margin in Northeast Greenland. Only Svalbard's Southwestern terrane is foreign to this margin, showing affinity, to the Pearya terrane of northern Ellesmere Island in arctic Canada. Between the margins of western Scandinavia and eastern Greenland, the wide continental shelves, now covered by late Paleozoic and younger successions, are inferred to be underlain by the Caledonide hinterland, probably incorporating substantial Grenville-age basement. In northernmost Norway, the NE-trending Caledonian thrust front truncates the NW-trending Neoproterozoic Timanide orogen of northwest Russia. Much of the central and eastern parts of the Barents Shelf are thought to be underlain by Caledonian-deformed Timanide basement.
Caledonian orogeny in Norden resulted from the closure of the Iapetus Ocean and Scandian collision of continent Baltica with Laurentia. Partial subduction of the Baltoscandian margin beneath Laurentia in the midlate Silurian was followed by rapid exhumation of the highly metamorphosed hinterland in the early Devonian, and deposition of Old Red Sandstones in intramontane basins. Late Scandian collapse of the orogen occurred on major extensional detachments, with defor mation persisting into the late Devonian.  相似文献   
62.
Several Late Jurassic (Kimmeridgian?-Tithonian) to Early Cretaceous (Late Berriasian-Valanginian) shallow-water carbonate clasts of different facies are contained in mass-flow deposits in a pelagic sequence in the Kurbnesh area of central Albania. These clasts are used to reconstruct shallow-water carbonate platforms, which formed on top of the radiolaritic-ophiolitic wildflysch (ophiolitic mélange) of the Mirdita Zone. Stratigraphic interpretation of the platform carbonates was compiled on basis of calcareous algae, benthic foraminifera, and calpionellids. From biostratigraphic data and microfacies analysis, the Neocomian clasts can be directly correlated with autochthonous platform carbonates of the western part of the Munella carbonate platform, which at least reaches up to the Late Aptian. A Late Jurassic precursor platform (Kurbnesh carbonate platform; nomen novum) was completely eroded until the Valanginian and is only documented by the clasts described here. It was deposited on top of the Mirdita Ophiolite Zone nappe stack, which formed during the Middle to Late Jurassic Kimmeridian orogeny. Thrusting and imbrications as well as the formation of the syntectonic wildflysch (mélange) therefore occurred much earlier than previously assumed. Our results constrain the Kimmeridian orogeny, which was controlled by the closure of the Neotethys Ocean, and show excellent correlation with the Eastalpine-Dinaric- Hellenic orogenic system.  相似文献   
63.
The middle and eastern parts of the Northern Calcareous Alps (NCA) can be subdivided into two distinct units with a lateral boundary marked by abrupt changes in the conodont colour alteration index (CAI-values). The first of these is a northern unit (Tirolikum) with a relatively homogeneous distribution of no or low grade conodont alteration (CAI 1.0–2.0). The thermal overprint is thought to be relatively young and related to a heat flow from the Tauern crystallization. The second unit consists of the Juvavic nappe system (Juvavikum), which is distributed along the southern rim of the NCA but also covers some of the northern parts of the Tirolikum. With respect to its CAI-distribution the Juvavikum is more heterogeneous on a regional and local scale, with some local CAI-inversions. The Juvavikum additionally shows distinctly different sets of CAI-values one with weak (CAI 1.0–1.5) and another with strong alteration (CAI 5.5–7.0) — at present the highest known thermal overprint measured in the NCA. The metamorphism is relatively old as it predates the Late Jurassic—Early Cretaceous gravity tectonic emplacement of the Juvavikum onto the Tirolikum. The high CAI-values of parts of the Juvavic nappe system are though to be related to tectonic burial in an accretionary wedge formed parallel to the closure of the Vardar Ocean. The low CAI values of the Tirolikum apparently exclude a direct juxtaposition of the two units at the time of metamorphism.  相似文献   
64.
The Fram Strait is very important with regard to heat and mass exchange in the Arctic Ocean, and the large quantities of heat carried north by the West Spitsbergen Current (WSC) influence the climate in the Arctic region as a whole. A large volume of water and ice is transported through Fram Strait, with net water transport of 1.7–3.2 Sv southward in the East Greenland Current and a volume ice flux in the range of 0.06–0.11 Sv. The mean annual ice flux is about 866,000 km2 yr−1. The Kongsfjorden–Krossfjorden fjord system on the coast of Spitsbergen, or at the eastern extreme of Fram Strait, is mainly affected by the northbound transport of water in the WSC. Mixing processes on the shelf result in Transformed Atlantic Water in the fjords, and the advection of Atlantic water also carries boreal fauna into the fjords. The phytoplankton production is about 80 g C m−2 yr−1 in Fram Strait, and has been estimated both below and above this for Kongsfjorden. The zooplankton fauna is diverse, but dominated in terms of biomass by calanoid copepods, particularly Calanus glacialis and C. finmarchicus. Other important copepods include C. hyperboreus, Metridia longa and the smaller, more numerous Pseudocalanus (P. minutus and P. acuspes), Microcalanus (M. pusillus and M. pygmaeus) and Oithona similis. The most important species of other taxa appear to be the amphipods Themisto libellula and T. abyssorum, the euphausiids Thysanoessa inermis and T. longicaudata and the chaetognaths Sagitta elegans and Eukrohnia hamata. A comparison between the open ocean of Fram Strait and the restricted fjord system of Kongsfjorden–Krossfjorden can be made within limitations. The same species tend to dominate, but the Fram Strait zooplankton fauna differs by the presence of meso- and bathypelagic copepods. The seasonal and inter-annual variation in zooplankton is described for Kongsfjorden based on the record during July 1996–2002. The ice macrofauna is much less diverse, consisting of a handful of amphipod species and the polar cod. The ice-associated biomass transport of ice-amphipods was calculated, based on the ice area transport, at about 3.55 × 106 ton wet weight per year or about 4.2 × 105 t C yr−1. This represents a large energy input to the Greenland Sea, but also a drain on the core population residing in the multi-year pack ice (MYI) in the Arctic Ocean. A continuous habitat loss of MYI due to climate warming will likely reduce dramatically the sympagic food source. The pelagic and sympagic food web structures were revealed by stable isotopes. The carbon sources of particulate organic matter (POM), being Ice-POM and Pelagic-POM, revealed different isotopic signals in the organisms of the food web, and also provided information about the sympagic–pelagic and pelagic–benthic couplings. The marine food web and energy pathways were further determined by fatty acid trophic markers, which to a large extent supported the stable isotope picture of the marine food web, although some discrepancies were noted, particularly with regard to predator–prey relationships of ctenophores and pteropods.  相似文献   
65.
We simultaneously followed stable carbon (δ13C) and nitrogen (δ15N) isotopes in a two-source food web model to determine trophic levels and the relative importance of open water- and ice-associated food sources (phytoplankton vs. ice algae) in the lower marine food web in the European Arctic during four seasons. The model is based upon extensive seasonal data from 1995 to 2001.Phytoplankton, represented by samples of particulate organic matter from open water (Pelagic-POM) and ice algae, represented by samples from the underside of the ice (Ice-POM), were isotopically different. Ice-POM was generally dominated by the typical ice diatoms Nitzschia frigida and Melosira arctica and was more enriched than Pelagic-POM in 13C (δ13C = −20‰ vs. −24‰), but less enriched in 15N (δ15N = 1.8‰ vs. 4.0‰). However, when dominated by pelagic algae, Ice-POM was enriched in 13C and 15N similarly to Pelagic-POM.The derived trophic enrichment factors for δ15N (ΔN = 3.4‰) and δ13C (ΔC = 0.6‰) were similar in both pelagic and sympagic (ice-associated) systems, although the ΔC for the sympagic system was variable.Trophic level (TL) range for zooplankton (TL = 1.8-3.8) was similar to that of ice fauna (TL = 1.9-3.7), but ice amphipods were generally less enriched in δ15N than zooplankton, reflecting lower δ15N in Ice-POM compared to Pelagic-POM. For bulk zooplankton, TLs and carbon sources changed little seasonally, but the proportion of herbivores was higher during May-September than in October and March. Overall, we found that the primary carbon source for zooplankton was Pelagic-POM (mean 74%), but depending on species, season and TL, substantial carbon (up to 50%) was supplied from the sympagic system. For bulk ice fauna, no major changes were found in TLs or carbon sources from summer to autumn. The primary carbon source for ice fauna was Ice-POM (mean 67%), although ice fauna with TL > 3 (adult Onisimus nanseni and juvenile polar cod) primarily utilized a pelagic food source.  相似文献   
66.
Strain has been measured from clasts within a deformed conglomerate layer at 17 localities around an asymmetric fold in the Rundemanen Formation in the Bergen Arc System, West Norwegian Caledonides. Strain is very high and a marked gradient in strain ellipsoid shape exists. To either side of the fold, strain within the conglomerate bed is of the extreme flattening type. In the fold, especially on the lower fold closure, the strain is constrictional. Mathematical models of perturbations of flow in glacial ice have produced folds of the same geometry as this fold, with a strikingly similar pattern of finite strain. The fold geometry and strain pattern, as well as other field observations, suggest that the fold developed passively, as the result of a perturbation of flow in a shear zone, where the strain was accommodated by simple shear accompanied by extension along Y.  相似文献   
67.
68.
Seasonal changes in the zooplankton composition of the glacially influenced Kongsfjorden, Svalbard (79°N, 12°E), and its adjacent shelf were studied in 2002. Samples were collected in the spring, summer and autumn in stratified hauls (according to hydrographic characteristics), by means of a 0.180-mm Multi Plankton Sampler. A strong front between the open sea and the fjord waters was observed during the spring, preventing water mass exchange, but was not observed later in the season. The considerable seasonal changes in zooplankton abundance were related to the seasonal variation in hydrographical regime. The total zooplankton abundance during the spring (40–2010 individuals m−3) was much lower than in the summer and autumn (410–10 560 individuals m−3). The main factors shaping the zooplankton community in the fjord include: the presence of a local front, advection, the flow pattern and the decreasing depth of the basin in the inner fjord. Presumably these factors regulate the gross pattern of zooplankton density and distribution, and override the importance of biological processes. This study increased our understanding of seasonal processes in fjords, particularly with regard to the strong seasonal variability in the Arctic.  相似文献   
69.
70.
The mineralogy and geochemistry of a fragment of an active hydrothermal edifice from the Hydrothermal Hill of the Southern Trough valley of the Guaymas Basin in the Gulf of California were studied. The sample was collected from a depth of 1995 m by the Pisces manned submersible on cruise 12 of the R/V Akademik Mstislav Keldysh, Institute of Oceanology, Russian Academy of Sciences. The fragment and the edifice itself consists of two accrete pipes: ore (pyrrhotite) and barren (carbonate) combined in a single edifice by an outer barite–opal zone. The ore edifice is located in the rift zone of the Guaymas Basin with a thick sedimentary cover and is depleted in metals in comparison with ores from rift zones of the open ocean, which are not blocked by sedimentary deposits. This is explained by loss of metals at the boundary between hot sills and sedimentary rocks and by the processes of interaction of hydrothermal solutions with sedimentary deposits. The sedimentary series faciitates long-term preservation of endogenous heat and the ore formation process. Ore edifices of the Guaymas Basin are mostly composed of pyrrhotite, have a specific set of major elements, microelements and REEs, and contain naphthenic hydrocarbons. They may be search signs of hidden polymetallic deposits, considered to be the roots of ore occurrences localized under the surface of the bottom in young active rifts with high spreading and sedimentation rates, i.e., in near-continental areas of rifts of the humid zone with avalanche sedimentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号